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Optical Flow Problem (Review)

● Given two subsequent frames, estimate the apparent motion field u(x,y), 
v(x,y) between them

● u(x, y) measuring the horizontal movement of the pixel at location (x, y), v(x, 
y) measures the vertical movement.

● Together, the pixel at (x, y, t-1) goes to (x+u, y+v, t)



Lucas-Kanade

● Method for recovering image motion at pixels from optical flow
● 3 key assumptions:

1. small motions: points do not move very far
2. spatial coherence: points move like their neighbors 
3. brightness constancy: the brightness of a pixel remains constant between 

consecutive frames



Lucas-Kanade: Brightness Constancy Equation

Brightness Constancy: the brightness of a pixel remains constant between 
consecutive frames



First-Order Taylor Expansion

● The first-order taylor expansion of a function 𝑓(𝑥 + 𝚫𝑥) around 𝑥 is:

𝑓(𝑥 + 𝚫𝑥) ≈ 𝑓(𝑥) + ⛛𝑓 ᐧ 𝚫𝑥

● Now, we apply this to the RHS of the brightness constancy equation



Brightness Constancy Equation

(taylor expansion)

(subtract from both sides)

(brightness constancy assumption)

One equation, two unknowns!



Spatial Coherence Constraint

● Problem: 1 equation, 2 unknowns
● spatial coherence: points move like their neighbors 
● Assume the pixel’s neighbors have the same (u,v)

○ If we use a 5x5 window, that gives us 25 equations per pixel



Spatial Coherence Constraint
● Overconstrained linear system

The summations are over all pixels in the 5 x 5 window

Multiplying by AT to solve for d gives us:
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Conditions for solving this Lucas-Kanade equation

Q. Does this remind anything to you?

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small, otherwise it is close to being non-invertible

– eigenvalues λ
1
 and λ 

2
 of ATA should not be too small

• ATA should be well-conditioned
–  λ 

1
/ λ 

2
 should not be too large (λ 

1
 = larger eigenvalue)9



• Eigenvectors and eigenvalues of ATA relate to edge direction and 
magnitude 

• The eigenvector associated with the larger eigenvalue points in the 
direction of fastest intensity change

• The other eigenvector is orthogonal to it

M = ATA is the Harris corner detector!
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Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2

λ1 and λ2 are small “Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of the second moment 
matrix:
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This is why we want to track corners 
instead of edges!



Iterative Lucas Kanade
● Problem: motion usually isn’t very small, so regular Lucas-Kanade 

doesn’t work
● Solution: we just repeatedly do this method!



Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field
3. Repeat until convergence
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Pyramid Lucas-Kanade
● Problem: motion usually isn’t very small, so regular Lucas-Kanade 

doesn’t work
● Solution: reduce resolution of images until the motion is small 



image Iimage 
H

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tFrame t-1 u=10 
pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tframe t-1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & 
upsample

.

.

.
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Warping and Upsampling

● At each pyramid level, we repeatedly calculate flow and warp the 
image based on that flow 

● Once a pyramid level has converged, we upsample the flow to the 
next finer level

● To upsample:
○ Multiply flow vectors to match the finer image scale

● This upsampled flow is used as the starting point for iterative 
Lucas-Kanade at the finer level.



Attendance Form



Horn-Schunk method for optical flow
● The flow is formulated as a global 

energy function which is should be minimized:
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Horn-Schunk method for optical flow
● The flow is formulated as a global 

energy function which is should be minimized:
● The first part of the function is the brightness 

constancy.
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Horn-Schunk method for optical flow
● The flow is formulated as a global 

energy function which is should be minimized:
● The second part is the smoothness constraint. It’s 

trying to make sure that the changes between pixels 
are small.
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Horn-Schunk method for optical flow
● The flow is formulated as a global 

energy function which is should be minimized:
● 𝞪 is a regularization constant. Larger values of 𝞪 lead 

to smoother flows across time.
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Horn-Schunk method for optical flow
● Recall that:
● Substituting this into our original energy equation, 

we get: 
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Horn-Schunk method for optical flow
● Now, to minimize this, first we need to find the gradient with respect to 

u and v
● For this, we use the Euler-Lagrange Equation
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Euler Lagrange Equation
● Focusing just on u and computing each term individually:

 



Euler Lagrange Equation
● Plugging everything in for u:

● Similarly, for v we have:

 

 



Horn-Schunk method for optical flow

● The flow is formulated as a global energy function which is 
should be minimized:

● This minimization can be solved by taking the derivative 
with respect to u and v, we get the following 2 equations:
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Horn-Schunk method for optical flow

● By taking the derivative with respect to u and v, we get the following 2 
equations:

● Focusing on                     : this essentially represents the 2nd derivative, so 
we estimate it with                           . 

●             is the weighted average of u measured at (x,y) over its 
neighborhood of 5 x 5 pixels

● This makes sense because the estimation measures the deviation from the 
average change.
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Horn-Schunk method for optical flow

● Substituting into the original equations: 
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Horn-Schunk method for optical flow

● Rearranging, we get:

● This is linear in u and v, which means there’s an analytical solution for 
each pixel!
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● Analytical solution for:

● is:

Horn-Schunk method for optical flow
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Seam Carving



Seam Carving
● Assume input I is size m x n
● Output I is m x n’, 

○ where n’<n

● Basic Idea: remove unimportant pixels from the image
○ Unimportant = pixels with less “energy”

● Intuition for gradient-based energy:
○ Preserve edges
○ Human vision more sensitive to edges – so try remove content 

from smoother areas
○ Simple enough for producing some nice results
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Input: Given an energy E(i, j)

Dynamic Programming

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)34



Dynamic Programming

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)35

● Create a cost matrix M with the following property:
○ M(i, j) = minimal cost of a seam going through pixel (i, j)

○ starting from j=0

M(i, j)



M(i, 0) = E(i, 0) of a seam going through pixel (i, j)

Dynamic Programming

5 8 12 3
5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)36

M(i, j)



Q. What do you think should be this value?

Dynamic Programming

5 8 12 3

?

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)37

M(i, j)



M(i, j) = total energy of seam going through pixel (i, j) from j=0

Dynamic Programming

5 8 12 3

2+5

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)38

M(i, j)



The recurrence formula

Dynamic Programming

5 8 12 3

2+5

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)39

M(i, j)



 

Dynamic Programming 

5 8 12 3

7

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
40

M(i, j)



 

Dynamic Programming 

5 8 12 3

7 ?

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
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M(i, j)

5 8 12 3

7



 

Dynamic Programming 

5 8 12 3

7 3+3

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
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M(i, j)



 

Dynamic Programming 

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 8+8

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
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M(i, j)



 

Searching for minimum seam
Backtrack: Find the minimum M(i, j=m)

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16
44

M(i, j) This is the minimum 
in the last row



 

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16
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M(i, j)

Backtrack

After finding minimum M(i, j) at row j,
find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1



 

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16
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M(i, j)

Searching for Minimum



 

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16
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M(i, j)

Searching for Minimum



optimal

Preserved Energy

crop column seam

Image Reduction

Average 
Pixel 

Energy

pixel
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Minimize Inserted Energy

● Instead of removing the seam of least energy, remove the seam that 
inserts the least energy to the image !
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Tracking Inserted Energy

▪ Three possibilities when removing pixel Pi,j
pi,j-1 pi,j pi,j+1

pi-1,j-1 pi-1,j

pi,j

pi-1,j+1pi-1,j-1
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Pixel Pi,j : Left Seam

pi,j-1 pi,j pi,j+1

pi-1,j-1 pi-1,j

pi,j

pi-1,j+1pi-1,j-1
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Pixel Pi,j : Right Seam

pi,j+1pi,jpi,j-1

pi-1,j+1pi-1,j

pi,j

pi-1,j-1 pi-1,j+1
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Pixel Pi,j : Vertical Seam

pi,j-1 pi,j pi,j+1

pi-1,jpi-1,j-1

pi,j

pi-1,j+1pi-1,j
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Old Backward Cost Matrix

E
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New Forward Looking Cost Matrix
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Backward vs. Forward

Backward Forwar
d
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