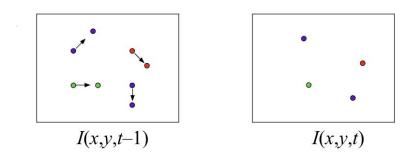
Lucas Kanade, Horn Schnuk, Seam Carving

Simran Bagaria

Optical Flow Problem (Review)

- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- u(x, y) measuring the horizontal movement of the pixel at location (x, y), v(x, y) measures the vertical movement.
- Together, the pixel at (x, y, t-1) goes to (x+u, y+v, t)



Lucas-Kanade

- Method for recovering image motion at pixels from optical flow
- 3 key assumptions:
 - 1. **small motions:** points do not move very far
 - 2. **spatial coherence:** points move like their neighbors
 - 3. **brightness constancy:** the brightness of a pixel remains constant between consecutive frames

Lucas-Kanade: Brightness Constancy Equation

Brightness Constancy: the brightness of a pixel remains constant between consecutive frames

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

$$\begin{vmatrix} (x,y) \\ \bullet \\ I(x,y,t-1) \end{vmatrix} = (u,v)$$

$$(x + u, y + v)$$

$$I(x,y,t-1)$$

First-Order Taylor Expansion

• The first-order taylor expansion of a function $f(x + \Delta x)$ around x is:

 $f(x + \Delta x) \approx f(x) + \nabla f \cdot \Delta x$

• Now, we apply this to the RHS of the brightness constancy equation

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Brightness Constancy Equation

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

$$I(x+u, y+v, t) \approx I(x, y, t-1) + I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t$$
(taylor expansion)

$$I(x+u, y+v, t) - I(x, y, t-1) = I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t$$

(subtract from both sides

$$I_x \cdot u + I_y \cdot v + I_t \approx 0 \rightarrow \nabla I \cdot \left[u \ v \right]^T + I_t = 0$$

(brightness constancy assumption)

One equation, two unknowns!

Spatial Coherence Constraint

- Problem: 1 equation, 2 unknowns
- **spatial coherence:** points move like their neighbors
- Assume the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

Spatial Coherence Constraint

• Overconstrained linear system

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Multiplying by A^{T} to solve for *d* gives us: $(A^{T}A) d = A^{T}b$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

The summations are over all pixels in the 5 x 5 window

Conditions for solving this Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

When is This Solvable?

- **A^TA** should be invertible
- **A^TA** should not be too small, otherwise it is close to being non-invertible
 - eigenvalues λ_1 and λ_2 of $\mathbf{A}^T \mathbf{A}$ should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Q. Does this remind anything to you?

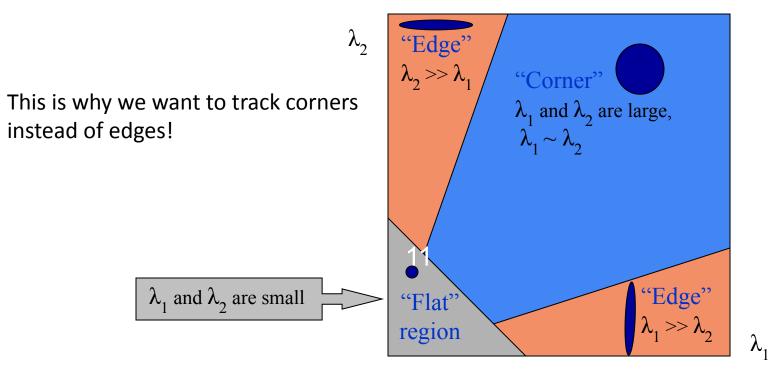
$M = A^{T}A$ is the Harris corner detector!

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude
 - The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
 - The other eigenvector is orthogonal to it

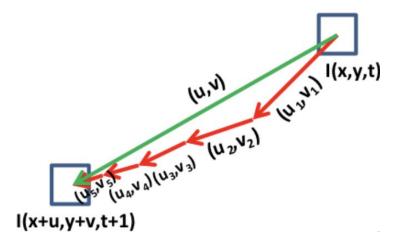
Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:



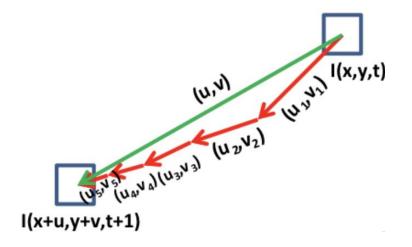
Iterative Lucas Kanade

- Problem: motion usually isn't very small, so regular Lucas-Kanade doesn't work
- Solution: we just repeatedly do this method!



Iterative Lucas-Kanade Algorithm

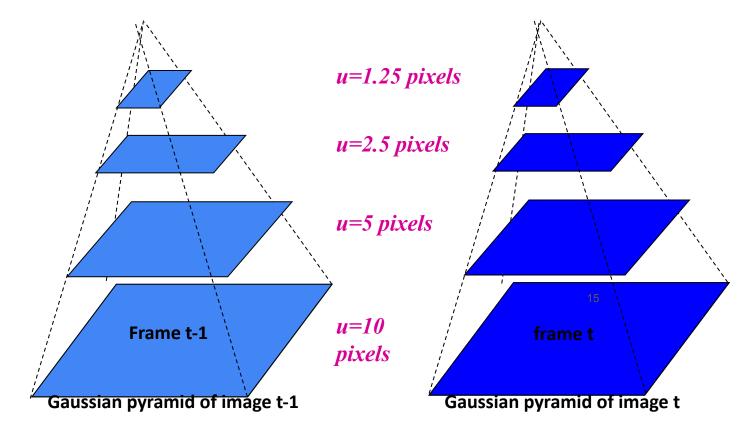
- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp I(t-1) towards I(t) using the estimated flow field
- 3. Repeat until convergence

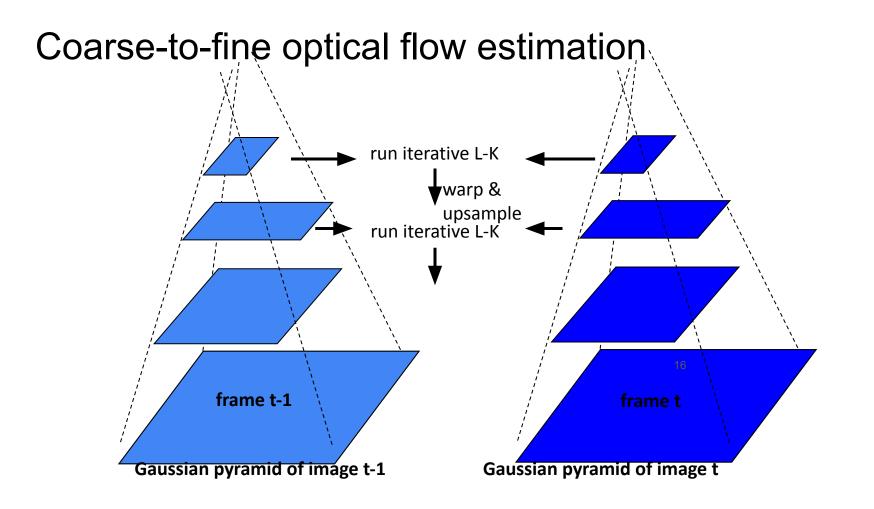


Pyramid Lucas-Kanade

- Problem: motion usually isn't very small, so regular Lucas-Kanade doesn't work
- Solution: reduce resolution of images until the motion is small

Coarse-to-fine optical flow estimation





Warping and Upsampling

- At each pyramid level, we repeatedly calculate flow and warp the image based on that flow
- Once a pyramid level has converged, we upsample the flow to the next finer level
- To upsample:
 - Multiply flow vectors to match the finer image scale
- This upsampled flow is used as the starting point for iterative Lucas-Kanade at the finer level.

Attendance Form

• The flow is formulated as a global energy function which is should be minimized:

$$E=\iint ig[(I_xu+I_yv+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

- The flow is formulated as a global energy function which is should be minimized:
- The first part of the function is the brightness constancy.

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 (\|
abla u\|^2 + \|
abla v\|^2)
ight] \mathrm{d}x\mathrm{d}y$$

- The flow is formulated as a global energy function which is should be minimized:
- The second part is the smoothness constraint. It's trying to make sure that the changes between pixels are small.

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 \ \|
abla u\|^2 + \|
abla v\|^2 \] \, \mathrm{d}x\mathrm{d}y$$

- The flow is formulated as a global energy function which is should be minimized:
- *a* is a regularization constant. Larger values of *a* lead to smoother flows across time.

$$E=\iintig[(I_xu+I_yv+I_t)^2+lpha^2\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

- Recall that: $|
 abla u|^2 + |
 abla v|^2 = u_x^2 + u_y^2 + v_x^2 + v_y^2$
- Substituting this into our original energy equation, we get:

$$E= \iint \left[(I_x u+I_y v+I_t)^2+lpha^2\left(|
abla u|^2+|
abla v|^2
ight)
ight]dx\,dy$$

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 \left(u_x^2 + u_y^2 + v_x^2 + v_y^2
ight) ig] \, dx \, dy$$

- Now, to minimize this, first we need to find the gradient with respect to u and v
- For this, we use the Euler-Lagrange Equation

$$egin{aligned} rac{\partial L}{\partial u} &-rac{\partial}{\partial x}rac{\partial L}{\partial u_x} -rac{\partial}{\partial y}rac{\partial L}{\partial u_y} = 0 \ rac{\partial L}{\partial v} &-rac{\partial}{\partial x}rac{\partial L}{\partial v_x} -rac{\partial}{\partial y}rac{\partial L}{\partial v_y} = 0 \end{aligned}$$

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 \left(u_x^2 + u_y^2 + v_x^2 + v_y^2
ight) ig] \, dx \, dy$$

Euler Lagrange Equation

$$rac{\partial L}{\partial u} - rac{\partial}{\partial x}rac{\partial L}{\partial u_x} - rac{\partial}{\partial y}rac{\partial L}{\partial u_y} = 0$$

• Focusing just on u and computing each term individually:

$$E = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 \left(u_x^2 + u_y^2 + v_x^2 + v_y^2
ight)
ight] dx \, dy$$

Euler Lagrange Equation

• Plugging everything in for u:

$$2I_x(I_xu+I_yv+I_t)-2lpha^2u_{xx}-2lpha^2u_{yy}=0 \ I_x(I_xu+I_yv+I_t)-lpha^2(u_{xx}+u_{yy})=0$$

• Similarly, for v we have:

$$2I_y(I_xu+I_yv+I_t)-2lpha^2v_{xx}-2lpha^2v_{yy}=0 \ I_y(I_xu+I_yv+I_t)-lpha^2(v_{xx}+v_{yy})=0$$

$$egin{aligned} rac{\partial L}{\partial u} &- rac{\partial}{\partial x} rac{\partial L}{\partial u_x} - rac{\partial}{\partial y} rac{\partial L}{\partial u_y} = 0 \ &rac{\partial \mathcal{L}}{\partial u} = 2 I_x (I_x u + I_y v + I_t) \ &rac{d}{dx} igg(rac{\partial \mathcal{L}}{\partial u_x} igg) = 2 lpha^2 u_{xx} \ &rac{d}{dy} igg(rac{\partial \mathcal{L}}{\partial u_y} igg) = 2 lpha^2 u_{yy} \end{aligned}$$

$$E = \iint ig[(I_x u + I_y v + I_t)^2 + lpha^2 \left(u_x^2 + u_y^2 + v_x^2 + v_y^2
ight) ig] \, dx \, dy$$

• The flow is formulated as a global energy function which is should be minimized:

$$E=\iint ig[(I_xu+I_yv+I_t)^2+lpha^2(\|
abla u\|^2+\|
abla v\|^2)ig]\,\mathrm{d}x\mathrm{d}y$$

• This minimization can be solved by taking the derivative with respect to u and v, we get the following 2 equations:

$$egin{aligned} &I_x(I_xu+I_yv+I_t)-lpha^2(u_{xx}+u_{yy})=0\ &I_y(I_xu+I_yv+I_t)-lpha^2(v_{xx}+v_{yy})=0 \end{aligned}$$

• By taking the derivative with respect to u and v, we get the following 2 equations: $I_x(I_x u + I_y v + I_t) - \alpha^2(u_{xx} + u_{yy}) = 0$

$$I_y(I_xu+I_yv+I_t)-lpha^2(v_{xx}+v_{yy})=0$$

- Focusing on $u_{xx} + u_{yy}$: this essentially represents the 2nd derivative, so we estimate it with $\overline{u}(x,y) u(x,y)$.
- $\overline{u}(x,y)$ is the weighted average of u measured at (x,y) over its neighborhood of 5 x 5 pixels
- This makes sense because the estimation measures the deviation from the average change.

• Substituting into the original equations:

$$egin{aligned} &I_x(I_xu+I_yv+I_t)-lpha^2(ar{u}(x,y)-u(x,y))=0\ &I_y(I_xu+I_yv+I_t)-lpha^2(ar{v}(x,y)-v(x,y))=0 \end{aligned}$$

• Rearranging, we get:

• This is linear in u and v, which means there's an analytical solution for each pixel!

• Analytical solution for:

$$(I_x^2+lpha^2)u+I_xI_yv=lpha^2\overline{u}-I_xI_t \ I_xI_yu+(I_y^2+lpha^2)v=lpha^2\overline{v}-I_yI_t$$

	-	
-		=
-		
•	10	-
		-

$$u = \bar{u} - \frac{I_x(I_x\bar{u} + I_y\bar{v} + I_t)}{\alpha^2 + I_x^2 + I_y^2}$$
$$v = \bar{v} - \frac{I_y(I_x\bar{u} + I_y\bar{v} + I_t)}{\alpha^2 + I_x^2 + I_y^2}$$

Seam Carving

Seam Carving

- Assume input I is size m x n
- Output I is m x n',
 - where n'<n
- Basic Idea: remove unimportant pixels from the image
 - Unimportant = pixels with less "energy"

$$E(I) = \left|\frac{\partial I}{\partial x}\right| + \left|\frac{\partial I}{\partial y}\right|$$

$$E(I) = \sqrt{(\frac{\partial I}{\partial x})^2 + (\frac{\partial I}{\partial y})^2}$$

- Intuition for gradient-based energy:
 - Preserve edges
 - Human vision more sensitive to edges so try remove content from smoother areas
 - Simple enough for producing some nice results

Dynamic Programming

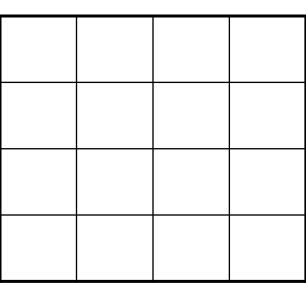
Input: Given an energy E(i, j)

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

Dynamic Programming

- Create a cost matrix M with the following property:
 - M(i, j) = minimal cost of a seam going through pixel (i, j)
 - starting from j=0



5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

M(i, j)

Dynamic Programming

M(i, 0) = E(i, 0) of a seam going through pixel (i, j)

5	8	12	3

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

Energy - E(i, j)

M(i, j)

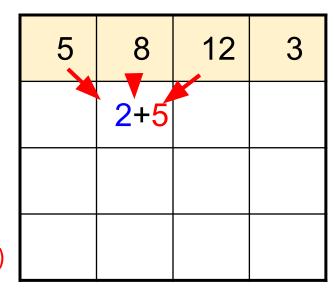
Q. What do you think should be this value?

5	8	12	3
	?		

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

M(i, j)

M(i, j) = total energy of seam going through pixel (i, j) from j=0

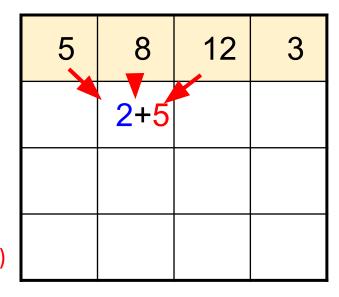


5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

M(i, j)

The recurrence formula

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$



5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

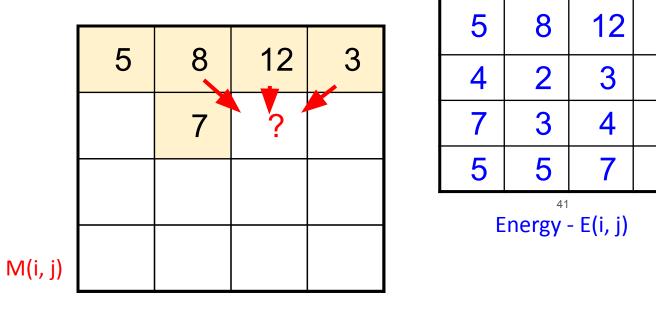
M(i, j)

5	8	12	3
	7		

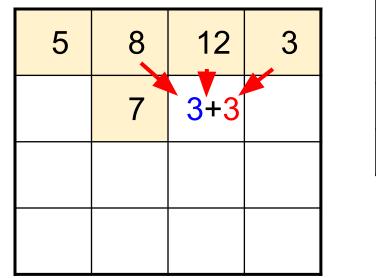
5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8

M(i, j)

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$



$$\mathbf{M}(i, j) = \underbrace{E(i, j)}_{i = 1} + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \underbrace{\mathbf{M}(i-1, j+1)}_{i = 1})$$



5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8
42			

M(i, j)

$$\mathbf{M}(i,j) = \underbrace{E(i,j)}_{j} + \min(\mathbf{M}(i-1,j-1), \underbrace{\mathbf{M}(i-1,j)}_{j}, \mathbf{M}(i-1,j+1))$$

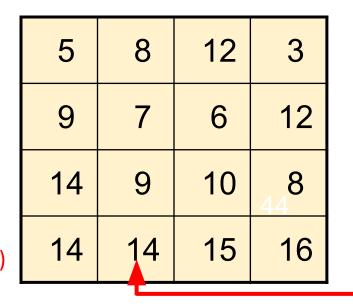
5	8	12	3
9	7	6	12
14	9	10	8
14	14	15	<mark>8+8</mark>

5	8	12	3
4	2	3	9
7	3	4	2
5	5	7	8
	43		

M(i, j)

Searching for minimum seam

Backtrack: Find the minimum M(i, j=m)



M(i, j)

This is the minimum in the last row

Backtrack

After finding minimum M(i, j) at row j,

find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1

5	8	12	3
9	7	6	12
14	9	10	8
14	14	15	16

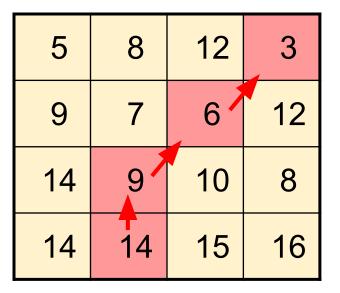
M(i, j)

Searching for Minimum

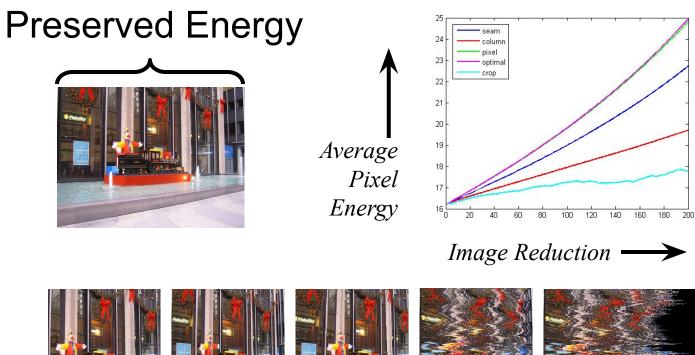
5	8	12	3
9	7	6	12
14	9	10	8
14	14	15	16

M(i, j)

Searching for Minimum



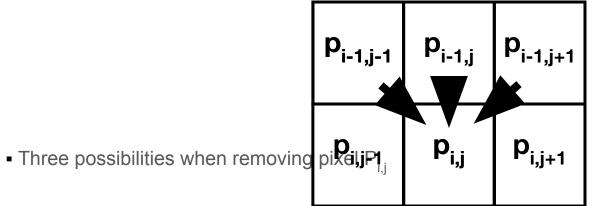
M(i, j)



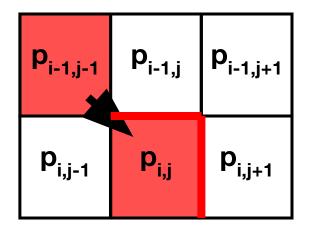
Minimize Inserted Energy

 Instead of removing the seam of least energy, remove the seam that <u>inserts the least energy</u> to the image !

Tracking Inserted Energy



Pixel $P_{i,j}$: Left Seam



 $C_L(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j-1)|$

Pixel $P_{i,j}$: Right Seam

$$C_R(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j+1)|$$

Pixel $P_{i,j}$: Vertical Seam

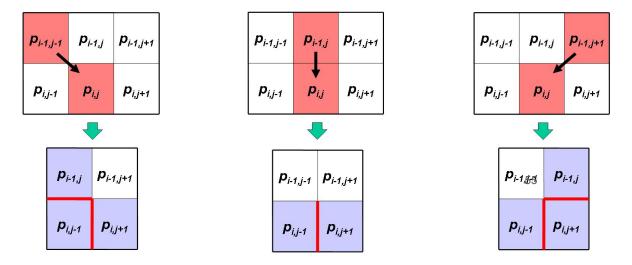


Old Backward Cost Matrix

$$M(i,j) = E \quad j) + \min \begin{cases} M(i-1,j-1) & &) \\ M(i-1,j) & & , \\ M(i-1,j+1) & &) \end{cases}$$

New Forward Looking Cost Matrix

$$M(i,j) = E(i,j) + min \begin{cases} M(i-1,j-1) + C_L(i,j) \\ M(i-1,j) + C_V(i,j) \\ M(i-1,j+1) + C_R(i,j) \end{cases}$$



Backward vs. Forward

Backward

Forwar d