Lucas Kanade, Horn
Schnuk, Seam Carving

Simran Bagaria

Optical Flow Problem (Review)

e Given two subsequent frames, estimate the apparent motion field u(x,y),
v(X,y) between them

e u(Xx, y) measuring the horizontal movement of the pixel at location (x, y), v(X,
y) measures the vertical movement.

e Together, the pixel at (x, y, t-1) goes to (x+u, y+y, t)

Lucas-Kanade

e Method for recovering image motion at pixels from optical flow

e 3 key assumptions:
1. small motions: points do not move very far
2. spatial coherence: points move like their neighbors
3. brightness constancy: the brightness of a pixel remains constant between
consecutive frames

Lucas-Kanade: Brightness Constancy Equation

Brightness Constancy: the brightness of a pixel remains constant between
consecutive frames

I(x, p,t=1) = I(x+u(x,y), y +v(x,),1)

()
O\‘dlsplacement = (u,v)

o
(z+u.y+v)

](xayat_l) I(xayat)

First-Order Taylor Expansion

e The first-order taylor expansion of a function f{x + Ax) around x is:

flx + Ax) = flx) + Vf Ax

e Now, we apply this to the RHS of the brightness constancy equation

I(x, y,t=1)=1(x+u(x,y), y+v(x,y),t)

Brightness Constancy Equation

1(x, y,t =1)=1(x+u(x,y),y +V(x,),1)
I(x+u,y+vt) = I(x, y,t =)+ 1 -u(x,y)+1,-v(x,y)+1,

(taylor expansion)
I(x+u,y+v,0)=1(x,y,t=1)=1 -u(x,y)+1,-v(x,y)+1,
. (subtract from both sides)
]x .u_|_[y 'V+[t ~ () —)V[[M V] +[t:O
(brightness constancy assumption)

One equation, two unknowns!

Spatial Coherence Constraint

e Problem: 1 equation, 2 unknowns
e spatial coherence: points move like their neighbors

e Assume the pixel's neighbors have the same (u,v)
o If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(pi) + VI(p;) - [u v]

- I:(p1) Iy(p1) | [Ii(p1)
I:(p2) Iy(p2) [u] = _ | Li(p2)
i Ix(I;25) fy(1;25)) i It(I;25) |

Spatial Coherence Constraint

e Overconstrained linear system

[I:(p1) Iy(p1) | [Ii(p1) |
I:(p2) Iy(p2) { u] _ | L(p2) A d=b
: : v : 25x2 2x1 25x1
| Ix(p25) Iy(p2s) | | I1(p2s) |

Multiplying by AT to solve for d gives us: (ATA) d= ATb

AT A Alp

[zzxfx zfxfy] [u] _ [> I Ty

The summations are over all pixels in the 5 x 5 window

Conditions for solving this Lucas-Kanade equation

> Iy Z]a:]y u - _ > Iy
/ Y Ixly o Iyly v | > Iyl

AT A Alp

When is This Solvable?
e ATA should be invertible
e A'A should not be too small, otherwise it is close to being non-invertible
— eigenvalues A and A | of ATA should not be too small
e A'A should be well-conditioned
— A/ A should not be too large (A | = larger eigenvalue)

™\ Q. Does this remind anything to you?

M = ATA is the Harris corner detector!

Lle S I I,
ATA = [gmy %Iylz] =2 [I,] [Iy) =Y vI(vD"

e Eigenvectors and eigenvalues of ATA relate to edge direction and
magnitude

e The eigenvector associated with the larger eigenvalue points in the
direction of fastest intensity change

e The other eigenvector is orthogonal to it

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment
matrix:

A

2

This is why we want to track corners
instead of edges!

11
A, and A, are small ;::>

lterative Lucas Kanade

e Problem: motion usually isn’t very small, so regular Lucas-Kanade
doesn’t work
e Solution: we just repeatedly do this method!

I(x+u,y+v,t+1)

lterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field
3. Repeat until convergence

I(x+u,y+v,t+1)

Pyramid Lucas-Kanade

e Problem: motion usually isn’t very small, so regular Lucas-Kanade
doesn’t work
e Solution: reduce resolution of images until the motion is small

Coarse-to-fine optical flow estimation

AT
N
N
UANERN
o
]
I

u=1.235 pixels iy

u=2.5 pixels

u=>5 pixels

aussian pyramid of image t-1 aussian pyrami

v 1! \
\ VIl \
\ Vol \
]

Iy 1)

1
11
11

1

1

Coarse-to-fine optical flow estimation.

__> run iterative L-K
, warp &

upsample
run iterative L-K

aussian pyramid of image t-1 Gaussian pyramid of image t

Warping and Upsampling

e At each pyramid level, we repeatedly calculate flow and warp the
image based on that flow

e Once a pyramid level has converged, we upsample the flow to the
next finer level

e To upsample:

o Multiply flow vectors to match the finer image scale

e This upsampled flow is used as the starting point for iterative

Lucas-Kanade at the finer level.

'm

Fo

Attendance

Horn-Schunk method for optical flow

e The flow is formulated as a global
energy function which is should be minimized:

E= // ((Lou+ I + L)* + o2 (|Vul? + | Vo|?)] dedy

Horn-Schunk method for optical flow

e The flow is formulated as a global
energy function which is should be minimized:

e The first part of the function is the brightness

constancy.
E= // Lu+ Lo+ LF +(|Vul? + [Vo|?)] dedy

Horn-Schunk method for optical flow

e The flow is formulated as a global
energy function which is should be minimized:

e The second part is the smoothness constraint. It's
trying to make sure that the changes between pixels

are small.
E= // [(Lou+ Iyv+ LI)* + o §| Vul® + | V| *}] dzdy

Horn-Schunk method for optical flow

e The flow is formulated as a global
energy function which is should be minimized:

e a is a regularization constant. Larger values of a lead
to smoother flows across time.

E= / / (Lw+ Lo+ L)’ Enwu? 4 [IVo[?)] dedy

Horn-Schunk method for optical flow

e Recall that: |Vu|* + |Vv|* = u] +u) +v; + v,
e Substituting this into our original energy equation,
we get:

E = // (Iu+ Ly + L) + & (|Vu|® + |Vv]?)]| dz dy

E = // [(Tou+ Ly + I)* + o (u? —I—uz + v2 —I—vi)] dz dy

Horn-Schunk method for optical flow

e Now, to minimize this, first we need to find the gradient with respect to
uandyv
e For this, we use the Euler-Lagrange Equation

OL 0 OL 0 0L _ 0
Ou Or Ou, Oy Ouy -
oL 0 0L 0 oL

— — — — =)
v Oz Ov, Oy Ov,

E:// (Lou+ T+ I)? + o (u2 +u2 + o2 +2?)] de dy

Euler Lagrange Equation OL 9 oL 9§ OL
Ou Oz Ou, Oy Ouy

=0

e Focusing just on u and computing each term individually:

oL

e =21, (I;u+ Iyv+ I)

oL _ , d (0L d 5
e, 20U, I > (Ouw) N~ — (20°u;) = 20Uy,
oL d [0L d

= — 9a2 _ _

(9uy O Uy T (Buy) & (Za uy) 20 Uqgyy

B = // [(Imu—l—va—I—It)2 + a? (ui —l—uZ + v2 —l—vfj)] dz dy

I OL 0 OL 0 OL
Euler Lagrange Equation e o

Plugging everything in for u:

oL
Fu 2I,(I;u + Iy + I})
21, (Iyu+ Iyv+ 1) — 202U py — 2a2uyy — 0 J (Aac) :
—_— = 20" Uz
I.(I,u+ Lo+ I) — a2(um 4 uyy) —0 dz \ Ou,
i a_ﬁ — 9 2
e Similarly, for v we have: dy\ oy,) ~ 7 "w

2I,(I,u + Iyv+ 1) — 20%V ., — 2a2fuyy =0

L(Lu+ Iv+ It) — az(vm + vyy) =0

E= // [(Lou+ Iy + 1I)* + o® (v + u) + v +v.)]| dzdy

Horn-Schunk method for optical flow

e The flow is formulated as a global energy function which is
should be minimized:

E— / / (Lou+ Ly+ L)? + (| Vall? + [Vo|?)] dedy

e This minimization can be solved by taking the derivative
with respect to u and v, we get the following 2 equations:

L(Lu+ Ly + I;) — a®(tge + uyy) =0
I,(I,u+ Ly + 1) — a? (Vgp + Vyy) =0

Horn-Schunk method for optical flow

e By taking the derivative with respect to u and v, we get the following 2

equations: L(Iu+ Loy + I,) — az(um +) =0

I,(I,u+ Iy + I;) — a? (Vge + Vyy) =0
e Focusing on Uzz + Uyy : this essentially represents the 2nd derivative, so
we estimate it with u(z,y) — u(z,y) .

e u(z,y) is the weighted average of u measured at (x,y) over its
neighborhood of 5 x 5 pixels

e This makes sense because the estimation measures the deviation from the
average change.

Horn-Schunk method for optical flow

e Substituting into the original equations:

L(TLau+ Iy + 1) — a®(tge + uyy) =0
I,(I,u+ Iy + I;) — a? (Vge + Vyy) =0

|

Horn-Schunk method for optical flow

e Rearranging, we get:
L(Iu+ Ly + I;) — o®(a(z,y) — u(z,y)) =0
Iy(I:cu + va + It) - a2(1—)(w,y) o ’U(ZU, y)) =0

(I2 + o®)u+ LI,y = o’u — LI
LIu+ (IZ + o®)v = o*v — LI,

e Thisis linearin u and v, which means there’s an analytical solution for
each pixel!

Horn-Schunk method for optical flow

e Analytical solution for:

(2 + o®)u+ LI,y = o®u — L. I,
LIu+ (IZ 4+ a®)v = o®v — LI,

® S
Y I,(I;u+ 1,0 + I})
B a? + I2 4+ I2
IL,(I,u+ I,v+ 1
v — T — y (L0 + 1,0 + 1)

a2+I§+I5

Seam Carving

Seam Carving

e Assume input | is size m x n
e Output lism x n’,
o where n'<n

e Basic Idea: remove unimportant pixels from the image
o Unimportant = pixels with less “energy”

B() = |5, 1+ 5,) =G0+ Gy

e Intuition for gradient-based energy:
o Preserve edges

o Human vision more sensitive to edges — so try remove content
from smoother areas

o Simple enough for producing some nice results

Dynamic Programming

Input: Given an energy E(i, j)

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

Energy - E(i, j)

Dynamic Programming

e Create a cost matrix M with the following property:
o M(i, j) = minimal cost of a seam going through pixel (i, j)

o starting from j=0

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

M(i, j)

Energy - E(i, j)

Dynamic Programming

M(i, 0)

E(i, 0) of a seam going through pixel (i, j)

M(i, j)

12

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

Energy - E(i, j)

Dynamic Programming

Q. What do you think should be this value?

M(i, j)

12

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

Energy - E(i, j)

Dynamic Programming

M(i, j) = total energy of seam going through pixel (i, j) from j=0

5| 8| 12| 3

5\V8 1z 3 4] 21 3 o
o+d] 71 3] 4| 2

50 5] 7| 8

Energy - E(i, j)

M(i, j)

Dynamic Programming

The recurrence formula

M(i,)=(E(, j)+ min(M(G =1,/ - DIM(@ -1, /), M(i -1, j +1))

M(i, j)

5 8| 12| 3

5\V8 1z 3 4] 21 3 o
o+d] 71 3] 4| 2

50 5] 7| 8

Energy - E(i, j)

Dynamic Programming

12

M(i, j)

5| 8| 12| 3
4l 2] 3] 9
7] 3] 4] 2
5/ 5| 7] 8
Enerngo- E(i, J)

M(i, j)

Dynamic Programming

M(i, j)= E(i, j) +min(M(i =1, j = 1),M(i -1, /), M(i = 1, j + 1))

3} 8| 12| 3
I ?

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

Energy - E(i, j)

41

M(i, j)

Dynamic Programming

M(i, j)=(E(, j)}+ min(M(i -1, j 1), M@ =1, /), M(i ~ 1. j + 1))

5| 8| 12| 3
Y
7 [3+3

5| 8| 12| 3
41 2] 3] 9
7| 3| 4| 2
5| 5| 7| 8

Energy - E(i, j)

42

Dynamic Programming

M(i, j)=(Ei, j)+ min(M@i ~ 1, j - D{M(i ~ 1, /), M(i =1, j+1))

5| 8] 12| 3
5| 8| 12| 3 21 21 3] 9
9| 7| 6| 12 7| 3] 4| 2
!
14| 9| 10| 8 > 543 L
A\ Energy - E(i, j)
viy | 14| 14 15\8*+§

M(i, j)

Searching for minimum seam

Backtrack: Find the minimum M(i, j=m)

5| 8| 12| 3
9| 7| 6| 12
14| 9| 10| 8
14 15| 16

14

This is the minimum
in the last row

Backtrack

After finding minimum M(i, j) at row j,
find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1

3 8| 12| 3
9 14 6 | 12
14| 9| 10| 8 .
)
vij)| 14 14| 15| 16

M(i, j)

Searching for Minimum

S 8| 12| 3

9 14 6 | 12

14| o1 10| 8
)

14| 14| 15| 16

46

M(i, j)

Searching for Minimum

3 8| 12| 3

9 14 6/112

14| o1 10| 8
)

14| 14| 15| 16

47

Preserved Energy M=
Average 1:
Pixel |

15 L L L L) . L 1 1
Energy 0 20 40 60 80 100 120 140 160 180 200

Image Reduction =

column seam pixel optimal

Minimize Inserted Energy

e Instead of removing the seam of least energy, remove the seam that
inserts the least energy to the image !

Tracking Inserted Energy

= Three possibilities when removing

Pixel Pij - Left Seam

Pixel Pij . Right Seam

52

CR(iaj) — |I(7’7.7 5 1) o 1(7'7.7 _ 1)| + II(Z o lvj) o 1(7’7.7 + 1)|

Pixel Pij : Vertical Seam

Old Backward Cost Matrix

M(i,j)=E£ j)+ min {

M(i—1,j-1)

M(i— 1,5+ 4

]

54

New Forward Looking Cost Matrix

M(i,j) = E(i,j) + min

Pitj1| Pi1j | Pitjs1

M(Z_ 17.7 - 1) +CL(27])
M(i—1,5) + Cv(i,J)

Pij.1

Pij | Pij+1

Pi1j

Pi1j+1

Pij1

Pij+1

Pi1j1| Pi1j | Pi1j+1
|
Pij1 Pij | Pij+1

Pi1j1| Pi1j |Pi1j+1

) 4

Pi1j.1 | Pi1j+1

Pij1 | Pijrr

Pij1 | Pij

Pij+1

Pi134

Pi1j

Pij1

Pij+1

Backward vs. Forward

o.{

N
Y

3
_,

-

o byl T
e
>

e |

..h. ~ ______

o i.-l-sn--:

Vi VA

\sﬁ.?

= 4u__=_=__ | __. |

O rwA

s

Ba ard

