
Lucas Kanade, Horn
Schnuk, Seam Carving

Simran Bagaria

Optical Flow Problem (Review)

● Given two subsequent frames, estimate the apparent motion field u(x,y),
v(x,y) between them

● u(x, y) measuring the horizontal movement of the pixel at location (x, y), v(x,
y) measures the vertical movement.

● Together, the pixel at (x, y, t-1) goes to (x+u, y+v, t)

Lucas-Kanade

● Method for recovering image motion at pixels from optical flow
● 3 key assumptions:

1. small motions: points do not move very far
2. spatial coherence: points move like their neighbors
3. brightness constancy: the brightness of a pixel remains constant between

consecutive frames

Lucas-Kanade: Brightness Constancy Equation

Brightness Constancy: the brightness of a pixel remains constant between
consecutive frames

First-Order Taylor Expansion

● The first-order taylor expansion of a function 𝑓(𝑥 + 𝚫𝑥) around 𝑥 is:

𝑓(𝑥 + 𝚫𝑥) ≈ 𝑓(𝑥) + ⛛𝑓 ᐧ 𝚫𝑥

● Now, we apply this to the RHS of the brightness constancy equation

Brightness Constancy Equation

(taylor expansion)

(subtract from both sides)

(brightness constancy assumption)

One equation, two unknowns!

Spatial Coherence Constraint

● Problem: 1 equation, 2 unknowns
● spatial coherence: points move like their neighbors
● Assume the pixel’s neighbors have the same (u,v)

○ If we use a 5x5 window, that gives us 25 equations per pixel

Spatial Coherence Constraint
● Overconstrained linear system

The summations are over all pixels in the 5 x 5 window

Multiplying by AT to solve for d gives us:

8

Conditions for solving this Lucas-Kanade equation

Q. Does this remind anything to you?

When is This Solvable?
• ATA should be invertible
• ATA should not be too small, otherwise it is close to being non-invertible

– eigenvalues λ
1
 and λ

2
 of ATA should not be too small

• ATA should be well-conditioned
– λ

1
/ λ

2
 should not be too large (λ

1
 = larger eigenvalue)9

• Eigenvectors and eigenvalues of ATA relate to edge direction and
magnitude

• The eigenvector associated with the larger eigenvalue points in the
direction of fastest intensity change

• The other eigenvector is orthogonal to it

M = ATA is the Harris corner detector!

10

Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2

λ1 and λ2 are small “Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region

Classification of image points using eigenvalues of the second moment
matrix:

11

This is why we want to track corners
instead of edges!

Iterative Lucas Kanade
● Problem: motion usually isn’t very small, so regular Lucas-Kanade

doesn’t work
● Solution: we just repeatedly do this method!

Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field
3. Repeat until convergence

13

Pyramid Lucas-Kanade
● Problem: motion usually isn’t very small, so regular Lucas-Kanade

doesn’t work
● Solution: reduce resolution of images until the motion is small

image Iimage
H

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tFrame t-1 u=10
pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

15

image Iimage J

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tframe t-1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp &
upsample

.

.

.

16

Warping and Upsampling

● At each pyramid level, we repeatedly calculate flow and warp the
image based on that flow

● Once a pyramid level has converged, we upsample the flow to the
next finer level

● To upsample:
○ Multiply flow vectors to match the finer image scale

● This upsampled flow is used as the starting point for iterative
Lucas-Kanade at the finer level.

Attendance Form

Horn-Schunk method for optical flow
● The flow is formulated as a global

energy function which is should be minimized:

19

Horn-Schunk method for optical flow
● The flow is formulated as a global

energy function which is should be minimized:
● The first part of the function is the brightness

constancy.

20

Horn-Schunk method for optical flow
● The flow is formulated as a global

energy function which is should be minimized:
● The second part is the smoothness constraint. It’s

trying to make sure that the changes between pixels
are small.

21

Horn-Schunk method for optical flow
● The flow is formulated as a global

energy function which is should be minimized:
● 𝞪 is a regularization constant. Larger values of 𝞪 lead

to smoother flows across time.

22

Horn-Schunk method for optical flow
● Recall that:
● Substituting this into our original energy equation,

we get:

23

Horn-Schunk method for optical flow
● Now, to minimize this, first we need to find the gradient with respect to

u and v
● For this, we use the Euler-Lagrange Equation

24

Euler Lagrange Equation
● Focusing just on u and computing each term individually:

Euler Lagrange Equation
● Plugging everything in for u:

● Similarly, for v we have:

Horn-Schunk method for optical flow

● The flow is formulated as a global energy function which is
should be minimized:

● This minimization can be solved by taking the derivative
with respect to u and v, we get the following 2 equations:

27

Horn-Schunk method for optical flow

● By taking the derivative with respect to u and v, we get the following 2
equations:

● Focusing on : this essentially represents the 2nd derivative, so
we estimate it with .

● is the weighted average of u measured at (x,y) over its
neighborhood of 5 x 5 pixels

● This makes sense because the estimation measures the deviation from the
average change.

28

Horn-Schunk method for optical flow

● Substituting into the original equations:

29

Horn-Schunk method for optical flow

● Rearranging, we get:

● This is linear in u and v, which means there’s an analytical solution for
each pixel!

30

● Analytical solution for:

● is:

Horn-Schunk method for optical flow

31

Seam Carving

Seam Carving
● Assume input I is size m x n
● Output I is m x n’,

○ where n’<n

● Basic Idea: remove unimportant pixels from the image
○ Unimportant = pixels with less “energy”

● Intuition for gradient-based energy:
○ Preserve edges
○ Human vision more sensitive to edges – so try remove content

from smoother areas
○ Simple enough for producing some nice results

33

Input: Given an energy E(i, j)

Dynamic Programming

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)34

Dynamic Programming

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)35

● Create a cost matrix M with the following property:
○ M(i, j) = minimal cost of a seam going through pixel (i, j)

○ starting from j=0

M(i, j)

M(i, 0) = E(i, 0) of a seam going through pixel (i, j)

Dynamic Programming

5 8 12 3
5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)36

M(i, j)

Q. What do you think should be this value?

Dynamic Programming

5 8 12 3

?

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)37

M(i, j)

M(i, j) = total energy of seam going through pixel (i, j) from j=0

Dynamic Programming

5 8 12 3

2+5

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)38

M(i, j)

The recurrence formula

Dynamic Programming

5 8 12 3

2+5

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)39

M(i, j)

Dynamic Programming

5 8 12 3

7

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
40

M(i, j)

Dynamic Programming

5 8 12 3

7 ?

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
41

M(i, j)

5 8 12 3

7

Dynamic Programming

5 8 12 3

7 3+3

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
42

M(i, j)

Dynamic Programming

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 8+8

5 8 12 3
4 2 3 9
7 3 4 2
5 5 7 8

Energy - E(i, j)
43

M(i, j)

Searching for minimum seam
Backtrack: Find the minimum M(i, j=m)

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16
44

M(i, j) This is the minimum
in the last row

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16

45

M(i, j)

Backtrack

After finding minimum M(i, j) at row j,
find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16

46

M(i, j)

Searching for Minimum

5 8 12 3

9 7 6 12

14 9 10 8

14 14 15 16

47

M(i, j)

Searching for Minimum

optimal

Preserved Energy

crop column seam

Image Reduction

Average
Pixel

Energy

pixel

48

Minimize Inserted Energy

● Instead of removing the seam of least energy, remove the seam that
inserts the least energy to the image !

49

Tracking Inserted Energy

▪ Three possibilities when removing pixel Pi,j
pi,j-1 pi,j pi,j+1

pi-1,j-1 pi-1,j

pi,j

pi-1,j+1pi-1,j-1

50

Pixel Pi,j : Left Seam

pi,j-1 pi,j pi,j+1

pi-1,j-1 pi-1,j

pi,j

pi-1,j+1pi-1,j-1

51

Pixel Pi,j : Right Seam

pi,j+1pi,jpi,j-1

pi-1,j+1pi-1,j

pi,j

pi-1,j-1 pi-1,j+1

52

Pixel Pi,j : Vertical Seam

pi,j-1 pi,j pi,j+1

pi-1,jpi-1,j-1

pi,j

pi-1,j+1pi-1,j

53

Old Backward Cost Matrix

E

54

New Forward Looking Cost Matrix

55

Backward vs. Forward

Backward Forwar
d

56

